Yoneda embedding as contrapositive and call-cc as double negation

Posted in Category theory, Math, Programming by Mike Stay on 2008 January 26

Consider the problem of how to represent negation of a proposition P when we only have implication and falsehood:

P \to {\rm F}.

Since {\rm F} \to {\rm F} is true and {\rm T} \to {\rm F} is false, this does what we want.

The contrapositive says \neg Q \to \neg P has the same truth value as P \to Q. Using only implication, the contrapositive of P \to Q is

(Q \to {\rm F}) \to (P \to {\rm F}).

What if we don’t even have falsehood? Well, we can pick any proposition X to represent falsehood and form

(Q \to X) \to (P \to X).

The Yoneda embedding takes a category C^{\rm op} and produces a category \mbox{HOM}(C, \mbox{Set}):

\begin{array}{ccccccc}\mbox{Yoneda}_X: & C^{\rm op} & \to & \mbox{HOM}(C, \mbox{Set}) \\ & P & \mapsto & \mbox{hom}(P, X) \\ & f:P \to Q & \mapsto & \mbox{Yoneda}_X(f): & \mbox{hom}(Q, X) & \to & \mbox{hom}(P, X) \\ & & & & k & \mapsto & k \circ f \end{array}

This embedding is better known among computer scientists as the continuation passing style transformation.

In a symmetric monoidal closed category, like lambda calculus, we can move everything “inside:” every morphism f:P \to Q has an internal version f:I\to P \multimap Q. The internal Yoneda embedding of f is

\mbox{Yoneda}_X(f):I \to (Q \multimap X) \multimap (P \multimap X).

Here I is the “unit” type; notice how the target type is isomorphic under the Curry-Howard isomorphism to the contrapositive. This is a term that maps a continuation k:Q\multimap X and a value p:P to k(f(p)).

To get double negation, first do the Yoneda embedding on the identity to get

\mbox{Yoneda}_X(1_P):hom(P,X) \to hom(P,X),

then uncurry, braid, and recurry to get

\mbox{Yoneda}_X(1_P):P \to hom(hom(P,X),X),

or, internally,

\mbox{Yoneda}_X(1_P):I\to P \multimap ((P\multimap X)\multimap X).

This takes a value p to a function value k\mapsto k(p).

Call-with-current-continuation expects a term that has been converted to CPS style as above, and then hands it the remainder of the computation in k.


2 Responses

Subscribe to comments with RSS.

  1. haroldtherebel said, on 2008 January 30 at 11:35 pm

    I believe you have a typo on the third line. While “F -> T” is certainly true, it would make more sense to mention that “F -> F” is true.

  2. reperiendi said, on 2008 January 31 at 8:55 am

    Good catch, thanks! Fixed.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: