reperiendi

Another piece of the stone

Posted in Category theory, Math, Programming by Mike Stay on 2007 December 28

A few days ago, I thought that I had understood pi calculus in terms of category theory, and I did, in a way.

\lambda-calculus model in Set
type set of values
term function
(deterministic outcome)
rewrite rule identity functional
\pi-calculus model in Set
process set of states
reduction rule state update rule
(deterministic outcome)

To make lambda calculus into a category, we mod out by the rewrite rules and consider equivalence classes of terms instead of actual terms. A model of this category (i.e. a functor from the category to Set) picks out a set of values for each datatype and a function for each program. Given a value from the input set, we get a single value from the output set.

Similarly, a model of the pi calculus assigns to each process a set of states and to each reduction rule a function that updates the state. A morphism in this way of thinking is a certain number of reductions to perform. The reductions are deterministic in the sense that we can model “A or B” as A \sqcup B. Given an object’s state at a certain point, we can tell what set of states it can be in after the system reduces n messages.

However, what we really want is to know the set of states it can be in after all the messages have been processed: what is its normal form? This is far more like the rewrite rules in lambda calculus. It suggests that we should be treating the reduction rules like 2-morphisms instead of 1-morphisms. There’s one important difference from lambda calculus, however: the 2-morphisms of pi calculus are not confluent! It matters very much in which order they are evaluated. Thus processes can’t map to anything but trivial functions.

It looks like a better fit for models of the pi calculus is Rel, the category of sets and relations. A morphism in Rel can relate a single input state to multiple output states. This suggests we have a single object * in the pi calculus that gets mapped to a set of possible states for the system, while each process gets mapped to a relation that encodes all its possible reductions.

I’m rather embarrassed that it took me so long to notice this, since my advisor has been talking about replacing Set by Rel for years.

category lambda calculus pi calculus
objects types only one type *, a system of processes
a morphism an equivalence class of terms a structural congruence class of processes
dinatural transformation from the constant functor (mapping to the terminal set and its identity) to a functor generated by hom, products, projections, and exponentials (if they’re there) combinator: template for programs mapping between isomorphic types (usually) since there’s only one type, this is trivial
Model of the category in Rel (usually taken in Set, a subcategory of Rel) a set of values for each data type and a function for each morphism between them * maps to a set S of states for the system, and each process gets mapped to a relation that relates each element of S to its possible reductions in S
Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: