reperiendi

Escher and Mandelbrot

Posted in Math by Mike Stay on 2010 May 3

If you take a complex number z with argument θ and square it, you double θ. The Mandelbrot/Julia iteration

z ↦ z2 + c

does pretty much the same thing, but adds wiggles to the curve. Since the iterations stop when |z| > 2, the boundary at the zeroth iteration is a circle; after the first it’s a pear shape, and so on. We can map any point in the region between bands to a point in a rectangular tile that’s periodic once along the outside edge and twice along the inside edge. Here’s a site with a few different examples.

The transformation Escher used in “Print Gallery” takes concentric circles at r=1/rn to a logarithmic spiral. The concentric boundaries between iterations for the Julia set at c = 0 are circles. There ought to be a transformation for Mandelbrot / Julia sets similar to the Droste effect but spiraling inward so that the frequency is smoothly increasing just as the distance can be made to smoothly increase.

About these ads

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Follow

Get every new post delivered to your Inbox.

%d bloggers like this: